
POINTERS

• What is a pointer?

– The index of a book contains pointers.
– A URL (e.g., http://turing.ubishops.ca/home/cs318) is a pointer.
– A street address is a pointer.
– What is then a forwarding address?

∗ a pointer to a pointer!

• OK, so what is a (C++) pointer?

– Computer memory contains data which can be accessed using an address.

∗ A pointer is such an address, nothing more.

– If you want, computer memory is like an array holding data.

∗ A pointer then is an index in such an array.

– What are in fact pointers?

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/1

POINTERS

• What is a pointer?

– The index of a book contains pointers.
– A URL (e.g., http://turing.ubishops.ca/home/csc218) is a pointer.
– A street address is a pointer.
– What is then a forwarding address?

∗ a pointer to a pointer!

• OK, so what is a (C++) pointer?

– Computer memory contains data which can be accessed using an address.

∗ A pointer is such an address, nothing more.

– If you want, computer memory is like an array holding data.

∗ A pointer then is an index in such an array.

– What are in fact pointers?

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/1

POINTERS (CONT’D)

• Pointers can (just as array indices) be stored in variables.

• If we have some type d, then

d vx; → vx is a variable of type d

d* px; → px is a (variable holding a) pointer to a variable of type d

&vx → denotes the address of vx (i.e., a pointer, of type d*)
*px → denotes the value from the memory location pointed at

by px, of type d (we thus dereference px)

89917830 9001
(&x) (&px) (&ppx)

8991783010

px ppxx

Memory

*px = x + 1;

cout << x; 11

int x = 10;
int* px = &x;
int** ppx = &px;

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/2

WHAT POINTERS REALLY ARE

• Since a pointer is an address, it is usually represented internally as
unsigned int.

• Do we need a type for a pointer?

– Why?

– Always?

int x=10;
void* p = &x;
int * pi;
float* pf;
pi = (int*)p;
pf = (float*)p;
cout << "Pointer " << p << " holds the int: "<< *pi

<< " ...and the float: " << *pf << "\n";

• Special pointer (of type void*): NULL (really, 0), which points to nothing.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/3

WHAT POINTERS REALLY ARE

• Since a pointer is an address, it is usually represented internally as
unsigned int.

• Do we need a type for a pointer?

– Why?

– Always?

int x=10;
void* p = &x;
int * pi;
float* pf;
pi = (int*)p;
pf = (float*)p;
cout << "Pointer " << p << " holds the int: "<< *pi

<< " ...and the float: " << *pf << "\n";

• Special pointer (of type void*): NULL (really, 0), which points to nothing.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/3

POINTER ARITHMETIC

• The types of pointers do matter:
1. We know what we get when we dereference a pointer
2. We can do meaningful pointer arithmetic

int i=10; long j=10;
int *x = &i; long *y = &j;
int *x1 = x + 3; long *y1 = y + 3;
int *x2 = x - 2; long *y2 = y - 2;

x−2 x x+3

Memory
0x347923

0x34791B

0x34791C

0x34791D

0x34791E

0x34791F

0x347920

0x347921

0x347922

0x347924

0x437925

0x437926

0x437927

• Meaningful pointer arithmetic?!?

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/4

POINTER ARITHMETIC

• The types of pointers do matter:
1. We know what we get when we dereference a pointer
2. We can do meaningful pointer arithmetic

int i=10; long j=10;
int *x = &i; long *y = &j;
int *x1 = x + 3; long *y1 = y + 3;
int *x2 = x - 2; long *y2 = y - 2;

x−2

y

x+3

Memory
0x347923

0x34791B

0x34791C

0x34791D

0x34791E

0x34791F

0x347920

0x347921

0x347922

0x347924

0x437925

0x437926

0x437927

x

• Meaningful pointer arithmetic?!?

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/4

POINTER ARITHMETIC

• The types of pointers do matter:
1. We know what we get when we dereference a pointer
2. We can do meaningful pointer arithmetic

int i=10; long j=10;
int *x = &i; long *y = &j;
int *x1 = x + 3; long *y1 = y + 3;
int *x2 = x - 2; long *y2 = y - 2;

x−2

y+3y−2

Memory
0x347923

0x34791B

0x34791C

0x34791D

0x34791E

0x34791F

0x347920

0x347921

0x347922

0x347924

0x437925

0x437926

0x437927

x

y

x+3

• Meaningful pointer arithmetic?!?

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/4

ARRAYS AND POINTERS

• An array is just a pointer to its content:

10201

Memory

72466

72466

72467 72468 72469 72470 72471

nums n
u
m
s
[
2
]

n
u
m
s
[
1
]

n
u
m
s
[
3
]

n
u
m
s
[
4
]

n
u
m
s
[
5
]

n
u
m
s
[
0
]

float nums[6] = {1,2,3}

1.0 2.0 3.0

– In addition, when you declare an array (contiguous) memory space is also re-
served to hold its elements.

• What do they all mean?

float nums[6] = {1,2,3}; int nums[6] = {1,2,3};
float* p1 = nums; int* p1 = nums;
float* p2 = nums + 3; int* p2 = nums + 3;

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/5

ARRAYS VERSUS POINTERS

• The following declarations mean almost the same thing:

int* numsP;
int numsA[20];

• Because we have:

numsA[2] = 17; → Good
numsP[2] = 17; → Disaster!

– Prize for the most uninformative error message goes to
“Segmentation fault.”

• But it is perfectly good to do:

int numsP[] = {1,2,3};

• In other words, you do not have to provide the dimension for an array if you initialize
it at the moment of declaration (e.g., by providing a literal array).

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/6

ARRAY SUBSCRIPTS

• We access elements in an array precisely as we do it in Java:
– cout << x[6]; prints the seventh element of x
– x[5] = 20; assigns 20 to the sixth element of x

• The subscript operator [] is in fact implemented usingpointer arithmetic
– x[5] is a shorthand for (and thus a perfect equivalent to) &x+5.
– the subscript operator works with any pointer, not just with arrays.
– it does correct pointer arithmetic so that we access the intended element

x[3]
y[−2] x

Memory
0x347923

0x34791B

0x34791C

0x34791D

0x34791E

0x34791F

0x347920

0x347921

0x347922

0x347924

0x437925

0x437926

0x437927

y

x+3

y+3

x−2

y−2
y[3]

x[−2]

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/7

ARRAYS, POINTERS, AND FUNCTIONS

#include <iostream>
using namespace std;

void translate(char a) {
if (a == ’A’) a = ’5’; else a = ’0’;

}

void translate(char* array, int size) {
for (int i = 0; i < size; i++) {
if (array[i] == ’A’) array[i] = ’5’;
else array[i] = ’0’;

}
}

int main () {
char mark = ’A’; char marks[5] = {’A’,’F’,’A’,’F’,’F’};
translate(mark);
translate(marks,5);
cout << mark << "\n";
for (int i = 0; i < 5; i++)
cout << marks[i] << " ";

cout << "\n";
}

A
5 0 5 0 0

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/8

ARRAYS, POINTERS, AND FUNCTIONS

#include <iostream>
using namespace std;

void translate(char a) { // translate, by the way, is a OVERLOADED FUNCTION
if (a == ’A’) a = ’5’; else a = ’0’;

}

void translate(char* array, int size) {
for (int i = 0; i < size; i++) {
if (array[i] == ’A’) array[i] = ’5’;
else array[i] = ’0’;

}
}

int main () {
char mark = ’A’; char marks[5] = {’A’,’F’,’A’,’F’,’F’};
translate(mark);
translate(marks,5);
cout << mark << "\n";
for (int i = 0; i < 5; i++)
cout << marks[i] << " ";

cout << "\n";
}

A
5 0 5 0 0

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/8

ARRAYS, POINTERS, AND FUNCTIONS (CONT’D)

#include <iostream>
using namespace std;

int translate(char a) { // still overloaded...
if (a == ’A’) a = ’5’; else a = ’0’;
return a;

}
void translate(char* array, int size) {

for (int i = 0; i < size; i++) {
if (array[i] == ’A’) array[i] = ’5’;
else array[i] = ’0’;

}
}

int main () {
char mark = ’A’; char marks[5] = {’A’,’F’,’A’,’F’,’F’};
mark = translate(mark);
translate(marks,5);
cout << mark << "\n";
for (int i = 0; i < 5; i++)
cout << marks[i] << " ";

cout << "\n";
}

5
5 0 5 0 0

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/9

POINTERS AND FUNCTIONS

• An argument can be passed in C++ to a function using:

– Call by value: the value of the argument is passed; argument cannot be changed
by the function.

int aFunction(int i);

– Call by reference: the pointer to the argument is passed to the function; argu-
ment can be changed at will by the function.

int aFunction(int* i);

Used for output arguments (messy, error prone syntax).

– Call by constant reference: the pointer to the argument is passed to the function;
but the function is not allowed to change the argument.

int aFunction(const int* i);

more useful:

int aFunction(const char* i);

Used for bulky arguments (still messy syntax).

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/10

CALL BY REFERENCE

foo.cc
void increment (int* i) {

*i = *i + 1;
}

void increment1 (const int* i) {

*i = *i + 1;
}

int main () {
int n = 0;
increment(&n);
increment1(&n);

}

g++ -Wall foo.cc

foo.cc: In function ‘void increment1(const int *)’:
foo.cc:9: assignment of read-only location

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/11

CALL BY REFERENCE (CONT’D)

foo.cc
void increment (int& i) {

i = i + 1;
}

void increment1 (const int& i) {
i = i + 1;

}

int main () {
int n = 0;
increment(n);
increment1(n);

}

−→ no more messy syntax!

g++ -Wall foo.cc

foo.cc: In function ‘void increment1(const int &)’:
foo.cc:9: assignment of read-only reference ‘i’

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/12

CALL BY REFERENCE (CONT’D)

foo.cc
#include <iostream>
using namespace std;

void increment (int& i) {
i = i + 1;

}

int increment1 (const int& i) {
int r = i + 1;
return r;

}

int main () {
int n = 0;
increment(n);
cout << n << "\n";
n = increment1(n);
cout << n << "\n";

}

output
1
2

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/13

CALLING CONVENTIONS IN C++ AND JAVA

• The following are the implicit calling conventions:

What Java C++
Primitive types value value
(int, float, etc.)
Arrays reference value
Objects reference value

– In C++ everything is passed by value unless explicitly stated otherwise.
Arrays are apparently passed by reference, but only because of the array struc-
ture (pointer + content).

• In Java there is no other way to pass arguments than the implicit one.

• In C++ you can request that an argument be passed by reference by either passing
a pointer to the actual argument or by saying explicitly that you want to pass the
argument by reference.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/14

C STRINGS

• There is no special type for strings.

– Instead, strings are simply arrays of characters.

∗ Literal strings can be written surrounded by double quotes though.

char message[20] = "Hello.";

– The last character in a string is always the null byte (’\0’). So if you declare a
string of size 20 it will hold a maximum of 19 characters.

∗ C does not check for array overflow, so be careful not to go over the array
size.

– You can access individual characters just as you access elements in a normal
array:

message[1] = ’x’;

• Strings cannot be compared using the usual comparison operators (e.g., ==) (why?).

– Use strcmp instead.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/15

OPERATIONS ON STRINGS

• You can implement your own operations on strings (just do not forget about the null
byte at the end).

• Some operations are already defined for you though, including:

– Copy a string: strcpy (see man strcpy)

– Length of a string: strlen (see man strlen)

• Just do not forget to include the appropriate header:

#include <string.h>

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/16

STRUCTURES

• An array holds a number of elements of a given type.

– Individual elements are referred to by integer indices.

• By contrast, a structure holds elements of not necessarily the same type.

– Individual elements are referred to by symbolic names.

– Of course, we cannot thus loop over the members of a structure.

• For instance, a structure representing a student might contain

– the given name and surname (strings),

– the student number (integer),

– the mailbox number (integer), and

– the grade point average (floating point).

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/17

STUDENT STRUCTURE

struct student {
char* name;
char* surname;
unsigned int number;
unsigned short mailbox;
float gpa;

};

int main () {
student studs[5];
studs[0].name = "Jane";
studs[0].surname = "Doe";
studs[0].number = 1234567;
studs[1].name = "John";
studs[1].surname = "Smith";
studs[1].number = 7654321;
cout << studs[1].name << " " << studs[1].surname

<< " (" << studs[1].number << ")\n";
}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/18

STUDENT STRUCTURE

struct student {
char* name;
char* surname;
unsigned int number;
unsigned short mailbox;
float gpa;

};

int main () {
student studs[5];
studs[0].name = "Jane";
studs[0].surname = "Doe";
studs[0].number = 1234567;
studs[1].name = "John";
studs[1].surname = "Smith";
studs[1].number = 7654321;
cout << studs[1].name << " " << studs[1].surname

<< " (" << studs[1].number << ")\n";
}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/18

POINTERS TO STRUCTURES

• Let’s do something useful: a (linked) list (of integers).

list

car cdr

car

car

cdr

cdr

Nothing!cons_cell

list

Nothing!

nil

data

data

data

• Interesting operations:

Operation Meaning
cons adds an integer to the list
car returns the first element of a list
cdr returns a list without its first element
null returns true iff the list is empty

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/19

LINKED LIST

struct cons_cell {
int car;
cons_cell* cdr;

};
typedef cons_cell* list; // careful, could be bad programming practice!

const list nil = 0;

int null (list cons) {
return cons == nil;

}
list cons (int car, list cdr = nil) {

list new_cons = new cons_cell;
new_cons -> car = car; // (*new_cons).car = car;
new_cons -> cdr = cdr; // (*new_cons).cdr = cdr;
return new_cons;

}
int car (list cons) {

return cons -> car;
}
list cdr (list cons) {

return cons -> cdr;
}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/20

NEW (AND DELETE)

• new allocates memory for your data. The following are (somehow) equivalent:

char message[256]; char* pmessage;
pmessage = new char[256];

– Exception:

∗ message takes care of itself (i.e., gets deleted when it is no longer in use),
whereas

∗ pmessage however must be explicitly deleted when it is no longer needed:
delete[] pmessage;

– Perrils of not using new:
list cons (int car, list cdr = nil) {
cons_cell new_cons;
new_cons.car = car;
new_cons.cdr = cdr;
return &new_cons;

}

int main () {
list bad = cons(1);
cout << car(bad); → Boom!

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/21

DYNAMIC MEMORY MANAGEMENT

int main () {
 int i;
 foo();
}

cons_cell

cons_cellc

inti

int foo () {
 cons_cell c;
 list l = new cons_cell;
}

foo returns cfoo returns lConclusion:

main:

foo:

Memory
zap!!

zap!!

Heap

Stack

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/22

USING LINKED LISTS

list rmth (list cons, int which) {
list place = cons;
for (int i = 0; i < which - 1; i++) {
if (null(place))

break;
place = place -> cdr;

}
if (! null(place)) {
if (null(cdr(place)))

place -> cdr = nil;
else

place -> cdr = cdr(place -> cdr);
}
return cons;

}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/23

USING LINKED LISTS (CONT’D)

int main () {
int elm = -1;
list lst = nil;
while (elm != 0) {
cin >> elm;
if (elm != 0)

lst = cons(elm,lst);
}
lst = rmth(lst,1);
lst = rmth(lst,10);
cout << "List is:\n";
list iter = lst;
while (! null(iter)) {
cout << car(iter) << "\n";
iter = cdr(iter);

}
}

1
2
3
4
5
0
List is:
5
3
2
1

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/24

MEMORY LEAKS

• A good example:

list rmth (list cons, int which) {
list place = cons;
for (int i = 0; i < which - 1; i++) {

if (null(place))
break;

place = place -> cdr;
}
if (! null(place)) {

if (null(cdr(place)))
place -> cdr = nil;

else
place -> cdr = cdr(place -> cdr);

}
return cons;

}

• If you create something using new then you must eventually delete it using delete.

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/25

SAY NO TO MEMORY LEAKS

list rmth (list cons, int which) {
list place = cons;
for (int i = 0; i < which - 1; i++) {
if (null(place))

break;
place = place -> cdr;

}
if (! null(place)) {
if (null(cdr(place)))

place -> cdr = nil;
else {

list to_delete = cdr(place);
place -> cdr = cdr(place -> cdr);
delete to_delete;

}
}
return cons;

}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/26

STUDENT STRUCTURE, TAKE TWO

• The following won’t work. Why? What would happen if it would work?

struct student {
char name[20];
char surname[20];
unsigned int number;
unsigned short mailbox;
float gpa;

};

int main () {
student studs[5];
studs[0].name = "Jane";
studs[0].surname = "Doe";
studs[0].number = 1234567;
studs[1].name = "John";
studs[1].surname = "Smith";
studs[1].number = 7654321;
cout << studs[1].name << " " << studs[1].surname

<< " (" << studs[1].number << ")\n";
}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/27

STUDENT STRUCTURE, TAKE TWO (CONT’D)

• The following does work.

struct student {
char name[20];
char surname[20];
unsigned int number;
unsigned short mailbox;
float gpa;

};

int main () {
student studs[5];
strncpy(studs[0].name,"Jane",20);
strncpy(studs[0].surname,"Doe",20);
studs[0].number = 1234567;
strncpy(studs[1].name,"John",20);
strncpy(studs[1].surname,"Smith",20);
studs[1].number = 7654321;
cout << studs[1].name << " " << studs[1].surname

<< " (" << studs[1].number << ")\n";
}

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/28

THE PERILS OF DELETE

• Thou shall not leak memory, but also:

• Thou shall not leave stale pointers behind.

char* str = new char[128]; → allocate memory for str
strcpy(str,"hello"); → put something in there (“hello”)
char* p = str; → p points to the same thing
delete p; → “hello” is gone,

str is a stale pointer!!

• Thou shall not dereference deleted pointers.

strcpy(str,"hi"); → str already deleted!!

• Thou shall not delete a pointer more than once.

delete str; → str already deleted!!

– You can however delete null pointers as many times as you wish!
– So assign zero to deleted pointers whenever possible (not a panaceum)

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/29

THE PERILS OF DELETE

• Thou shall not leak memory, but also:

• Thou shall not leave stale pointers behind.

char* str = new char[128]; → allocate memory for str
strcpy(str,"hello"); → put something in there (“hello”)
char* p = str; → p points to the same thing
delete p; → “hello” is gone,

str is a stale pointer!!

• Thou shall not dereference deleted pointers.

strcpy(str,"hi"); → str already deleted!!

• Thou shall not delete a pointer more than once.

delete str; → str already deleted!!

– You can however delete null pointers as many times as you wish!
– So assign zero to deleted pointers whenever possible (not a panaceum)

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/29

THE PERILS OF DELETE (CONT’D)

// Can we delete stefan now??

data

struct prof {
 char* name;
 char* dept;
};

 strcpy (csc,"Computer Science");
 char *csc = new char[30];

 prof *stefan, *dimitri, *bruda;

 stefan−>dept = csc;
 dimitri−>dept = csc;

// Delete dimitri

 delete dimitri−>name;

 delete dimitri;

Exogenous

OK

???

 stefan = new prof; dimitri = new prof;
 stefan−>name = new char[30];
 dimitri−>name = new char[30];
 strcpy(stefan−>name,"Stefan Bruda");
 strcpy(dimitri−>name,"Dimitri Vouliouris");

 delete dimitri−>dept;

data

// Copy stefan
 bruda = new prof;

// (a) Shallow copying

 bruda−>name = stefan−>name;

// (b) Deep copying

 bruda−>name = new char[30];
 bruda−>dept = new char[30];
 strcpy(bruda.name,stefan.name);
 strcpy(bruda.dept,stefan.dept);

// Can we delete stefan now??

 bruda−>dept = stefan−>dept;

Indigenous

CS 318, FALL 2012 ARRAYS, POINTERS, STRUCTURES/30

